Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J Biosci ; 2010 Dec; 35(4): 539-546
Article in English | IMSEAR | ID: sea-161483

ABSTRACT

In Neurospora crassa, crosses between normal sequence strains and strains bearing some translocations can yield progeny bearing a duplication (Dp) of the translocated chromosome segment. Here, 30 breakpoint junction sequences of 12 Dp-generating translocations were determined. The breakpoints disrupted 13 genes (including predicted genes), and created 10 novel open reading frames. Insertion of sequences from LG III into LG I as translocation T(UK8- 18) disrupts the eat-3 gene, which is the ortholog of the Podospora anserine gene ami1. Since ami1-homozygous Podospora crosses were reported to increase the frequency of repeat-induced point mutation (RIP), we performed crosses homozygous for a defi ciency in eat-3 to test for a corresponding increase in RIP frequency. However, our results suggested that, unlike in Podospora, the eat-3 gene might be essential for ascus development in Neurospora. Duplication–heterozygous crosses are generally barren in Neurospora; however, by using molecular probes developed in this study, we could identify Dp segregants from two different translocation–heterozygous crosses, and using these we found that the barren phenotype of at least some duplication–heterozygous crosses was incompletely penetrant.

2.
J Genet ; 2009 Apr; 88(1): 33-9
Article in English | IMSEAR | ID: sea-114423

ABSTRACT

The Neurospora crassa fmf-1 mutation exerts an unusual 'perithecium-dominant' developmental arrest; fmf-1 x fmf-1+ cross becomes arrested in perithecial development regardless of whether the mutant participates in the cross as the male or female parent. We localized fmf-1 to the LG IL genome segment between the centromere-proximal breakpoint of the chromosome segment duplication Dp(IL)39311 and the centromere. By mapping crossovers with respect to RFLP markers in this region we further localized fmf-1 to an approximately 34-kb-genome segment. Partial sequencing of this segment revealed a point mutation in the gene NCU 09387.1, a homologue of the Schizosaccharomyces pombe ste11+ regulator of sexual development. The fmf-1 mutation did not complement a NCU 09387.1 deletion mutation, and transformation with wild-type NCU 09387.1 complemented fmf-1. S. pombe Ste11 protein (Ste11p) is a transcription factor required for sexual differentiation and for the expression of genes required for mating pheromone signalling in matP and matM cells. If FMF-1 also plays a corresponding role in mating pheromone signalling in Neurospora, then protoperithecia in an fmf-1 x fmf-1+ cross would be unable to either send or receive sexual differentiation signals and thus become arrested in development.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genome, Fungal , Models, Genetic , Mutation , Neurospora crassa/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL